# Derandomizing Algorithms on Product Distributions

## Ariel Gabizon Avinatan Hassidim





We say a randomized algorithm  $A_R$ computes a function f:{0,1}<sup>n</sup>  $\rightarrow$  {0,1} if for every  $x \in \{0,1\}^n$ ,

 $A_R(x,y) = f(x)$  w.h.p over y

#### `Ideal' Derandomization:

(randomized) A<sub>R</sub>

(deterministic) A<sub>D</sub>

- running time t(n)
- computing  $f:\{0,1\}^n \rightarrow \{0,1\}$

- running time  $\sim t(n)$
- computing f correctly
  on all x < {0, 1}</li>



#### First `relaxation':



(deterministic) A<sub>D</sub>

- running time t(n)
- computing  $f:\{0,1\}^n \rightarrow \{0,1\}$

- running time  $\sim t(n)$
- computing f correctly
  *w.h.p on any distribution of inputs*

**d**ie

... This is no relaxation at all! as need to succeed on distribution that gives probability 1 to any  $x \in \{0,1\}^n$ 

#### Real relaxation: Samplable distributions

#### [Impagliazzo-Wigderson]





- running time t(n) running time  $\sim$ t(n)
- computing  $f:\{0,1\}^n \rightarrow \{0,1\}$
- computing f correctly w.h.p
  on any *efficiently samplable* distribution of inputs

conditional results by [Impagiliazzo-Wigderson, Trevisan-Vadhan] , partial unconditional results by [Kabanets]



**Our relaxation: Product Distributions** 

- Fix large enough k..
- Adversary fixes arbitrary distribution D on {0,1}<sup>n</sup>.
- A<sub>D</sub> gets k *independent* samples x<sub>1</sub>,...,x<sub>k</sub> from
  D.
- A<sub>D</sub> needs to compute f(x<sub>1</sub>),...,f(x<sub>k</sub>) correctly w.h.p.
- Needs to do this in time  $\sim k \cdot t(n)$

(recall t(n) is running time of  $A_R$ )



<u>Dfn:</u> A product distribution X on ({0,1}<sup>n</sup>)<sup>k</sup> is made of k independent copies (X<sub>1</sub>,...,X<sub>k</sub>) of an arbitrary distribution D on {0,1}<sup>n</sup>



General Result - Algorithms <u>Thm:</u> f:{0,1}<sup>n</sup>→{0,1}

- $A_R$  rand. alg for f running in time  $t_r$ , using r random bits, with error  $\epsilon$ .
- $A_D$  det. alg for f running in time  $t_d$ . For k> 8.r. $t_d/t_r$ ,
- $\exists \text{ det. alg } A \text{ running in time } k^*t_r + \widetilde{O}(nk)$ s.t  $A(x_1, \dots, x_k) = f(x_1), \dots, f(x_k)$
- w.p  $\sim 1 \epsilon \cdot k$  over any product distribution.

• [GolWig] get this result for uniform dist.



# **Randomness Extraction - Brief review**

- Contain a lot of entropy'
- E extractor for  $\mathcal{C}$ : For every distribution X in  $\mathcal{C}$ , E(X) is uniform.
- Classic example: Von-Neumann trick for biased coin:

01→0 10→1 00,11→try again



# Proof Sketch

Given sequence  $x_1, \ldots, x_k$  let  $\{z_1, \ldots, z_s\}$  be the *distinct* elements of the sequence. Case 1:  $s < r - run A_{D}$  on all elements. Takes time s<sup>\*t</sup>d < k<sup>\*t</sup>r Case 2:  $s \ge r$  - sequence `contains a lot of randomness'. Extract randomness from sequence and use it run  $A_{\rm p}!$ i.e.  $\forall i \text{ return } A_{\mathsf{R}}(x_i, \mathsf{E}(x_1, \dots, x_k))$ , where  $\mathsf{E}$  is an extractor for product distributions

Recall k> r.td/tr



# Potential Problem: Randomness correlated with input may be bad w.h.p.



Potential Problem: Randomness correlated with input may be bad w.h.p.

#### Solution: Extract randomness only from order in which elements appear

- independent from actual input values
- As we get *independent* samples adversary has no control over this.
- extraction scheme will be a



The `multinomial extractor'

- Given  $x_1, \dots, x_k$
- {z<sub>1</sub>,...,z<sub>s</sub>} the distinct values among
  x<sub>1</sub>,...,x<sub>k</sub>
  - z<sub>i</sub> appears a<sub>i</sub> times
- Num. of orderings is

$$\binom{k}{a_1,\ldots,a_s} = \frac{k!}{a_1!\ldots a_s!}$$

**4**)E

 E outputs index of (x<sub>1</sub>,...,x<sub>k</sub>) in orderings. Under prod. distribution all orderings have same prob→ E is uniform!

Gives at least  $\Omega(s \cdot \log(k))$  bits ( $\geq r$  when  $s \geq r$ )

(generalization of [Von-Neumann, Elias])

# Correctness proof for case $s \ge r$

Want to show:  $A_R(x_i, E(x_1, ..., x_k))$  usually correct for all  $1 \le i \le k$ .

- Look at product distribution conditioned on seeing  $z_1,...,z_s$  with freq.  $a_1,...,a_s$ .
- $\rightarrow$ Get uniform distribution on orderings.
- Set of bad random strings for  $\{z_1, ..., z_s\}$  has mass at most  $\epsilon k$ .
- $\rightarrow$ 1- $\epsilon$ k frac. of orderings correspond to random string that is good for whole sequence.



Prf by picture: Condition product dist. on seeing  $z_1,...,z_s$ ,  $a_1,...,a_s$  times. E is random, and set of bad random strings is fixed (depends on distinct values, not order).



# <u>Reminder - Algorithm</u>

- 1.  $x_1, ..., x_k$  consist of s distinct elements
- 2.s < r
  - 1. Run  $A_D$  on each instance.
- $3.s \ge r$ 
  - 1.Extract r bits of randomness using multinomial extractor E
  - 2.Run  $A_R$  on each instance with the same random string  $E(x_1, ..., x_{\mu})$
- Will require k > rt<sub>d</sub>/t<sub>r</sub>



# Toy example using VN

• k=2,  $A_R$  uses one random bit. Given  $(x_1, x_2)$ :

- $x_1 = x_2$ : solve with  $A_D$
- $x_1 \neq x_2$ : run  $A_R$  on  $(x_1, x_2)$  with r=0 if  $x_1 < x_2$  and r=1 otherwise.
- We run  $A_{D}$  at most once.

General Result- Communication Protocols.

- $\underline{\mathsf{Thm:}} f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$
- $P_R$  rand. protocol for f using  $c_r$ communication bits, r random bits with error  $\epsilon$
- P<sub>D</sub> det. protocol for f using c<sub>d</sub> com. bits.
  →For k>~r·cd/c<sub>r</sub>, ∃ det protocol P using O(k\*c<sub>r</sub>) com. bits s.t. for any product distribution X, P answers correctly w.p.~1-€·k on (x<sub>1</sub>,y<sub>1</sub>),...,(x<sub>k</sub>,y<sub>k</sub>) ∈ X,

# An example of our results-Communication complexity of equality



Equality: f(x,y) = 1 iff  $\forall i, x_i = y_i$ 

| Com. Complexity | Deterministic | Randomized |
|-----------------|---------------|------------|
| One Shot        | O(n)          | O(1)       |
|                 |               |            |
|                 |               |            |



| $\forall$ j, Equality: f(x <sup>j</sup> ,y <sup>j</sup> ) = 1 | iff | $\forall i, x_i^j = y_i^j$ |
|---------------------------------------------------------------|-----|----------------------------|
|---------------------------------------------------------------|-----|----------------------------|

| Com. Complexity   | Deterministic | Randomized |
|-------------------|---------------|------------|
| One Shot          | O(n)          | O(1)       |
| k correct answers | O(kn)         | O(k log k) |
|                   |               |            |

#### D - arbitrary unknown distribution (x<sup>j</sup>,y<sup>j</sup>) sampled independently from D



|           | Com. Complexity                   | Deterministic | Randomized |
|-----------|-----------------------------------|---------------|------------|
|           | One Shot                          | O(n)          | O(1)       |
|           | k correct answers                 | O(kn)         | O(k log k) |
| k>n log n | Succeed w.h.p on<br>all instances | O(k log k)    |            |

# **Other Results**

- 1. Multiple Distributions-
- We assumed ∀i, x<sub>i</sub>~D
- What happens if there are multiple distributions?
- Fix unknown  $D_{1,...}D_{m}$ 
  - →i, x<sub>i</sub>~D<sub>j</sub> (we do not know which j)
    we get similar results for these `m-part product distributions'.
- 2. Improved implicit o(logn) probe search [Yao, Fiat-Naor]
- 3. Derandomizing Streaming algorithms in the random-order model.



# Proof Sketch

Given sequence  $x_1, \ldots, x_k$  let  $\{z_1, \ldots, z_s\}$  be the *distinct* elements of the sequence. Case 1:  $s < r - run A_D$  on all elements. Takes time s<sup>\*t</sup>d < k<sup>\*t</sup>r Case 2:  $s \ge r$  - sequence `contains a lot of randomness'. Extract randomness from sequence and use it run  $A_{\rm P}!$ i.e.  $\forall i \text{ return } A_{\mathbb{R}}(x_i, \mathbb{E}(x_1, \dots, x_k))$ , where E is an extractor for product dist. conditioned on seeing  $\geq r$  distinct values)

Recall k> r.td/tr

