
Derandomizing Algorithms on

Product Distributions

Ariel Gabizon

Avinatan Hassidim

We say a randomized algorithm AR

computes a function f:{0,1}n
{0,1}

if for every x2{0,1}n,

AR(x,y) = f(x) w.h.p over y

(randomized)

AR

• running time t(n)

• computing
f:{0,1}n

{0,1}

…We better relax the problem
to get some results!

• running time »t(n)

• computing f correctly
on all x2{0,1}n

(randomized)

AR

(deterministic)

AD

Arr!...Derandomize
something now or off with

your heads!

`Ideal’ Derandomization:

seems hard.. achieving AD with poly(t(n))

running time implies unknown circuit lower

bounds [Imp-Kab-Wig, Kab-Imp[,..so may take a

few milllion years

• running time t(n)

• computing
f:{0,1}n

{0,1}

…This is no relaxation at all! as need to
succeed on distribution that gives
probability 1 to any x2{0,1}n

• running time »t(n)

• computing f correctly
w.h.p on any
distribution of inputs

(Randomized)

AR

(deterministic)

AD

First `relaxation’:

• running time t(n)

• computing
f:{0,1}n

{0,1}

conditional results by [Impagiliazzo-

Wigderson, Trevisan-Vadhan] , partial
unconditional results by [Kabanets]

• running time »t(n)

• computing f correctly w.h.p
on any efficiently samplable
distribution of inputs

(Randomized)

AR

(deterministic)

AD

Real relaxation: Samplable distributions
Wigderson]-[Impagliazzo

Fix large enough k..

- Adversary fixes arbitrary distribution D on
{0,1}n.

- AD gets k independent samples x1,…,xk from
D.

AD needs to compute f(x1),…,f)xk) correctly
w.h.p.

Needs to do this in time » k¢t(n)

(recall t(n) is running time of AR)

Our relaxation: Product Distributions

Dfn: A product distribution X on
({0,1}n)k is made of k independent
copies (X1,…,Xk) of an arbitrary
distribution D on {0,1}n

General Result - Algorithms

Thm: f:{0,1}n{0,1}

• AR – rand. alg for f running in time tr ,
using r random bits, with error ².

• AD – det. alg for f running in time td.

For k> 8¢r¢td/tr,

9 det. alg A running in time k*tr + O(nk)

s.t A(x1,..,xk) = f(x1),..,f(xk)

w.p »1-²¢k over any product distribution.

• [GolWig] get this result for uniform dist.

Randomness Extraction – Brief review

C – class of distributions that `contain a
lot of entropy’

E – extractor for C : For every

distribution X in C, E(X) is uniform.`

- Classic example: Von-Neumann trick for
biased coin:

010 101 00,11try again

Proof Sketch

Given sequence x1,..,xk let {z1,..,zs} be
the distinct elements of the sequence.

Case 1: s<r- run AD on all elements.
Takes time s*td < k*tr

Case 2: s¸r- sequence `contains a lot of
randomness’. Extract randomness from
sequence and use it run AR!

i.e. 8i return AR(xi, E(x1,…,xk)) , where E is
an extractor for product distributions

Recall k> r¢td/tr

Potential Problem: Randomness correlated
with input may be bad w.h.p.

(x1,…,xk)
E(x1,…,xk)

= set of bad

random strings

for one of the

xi’s

(i.e., AR(xi,y)f(xi))

sequences with ¸

r distinct values
random

strings

(x1,…,xk)

(x1,…,xk) E(x1,…,xk)

E(x1,…,xk)

Potential Problem: Randomness correlated
with input may be bad w.h.p.

Solution: Extract randomness only from
order in which elements appear

- independent from actual input values

- As we get independent samples adversary
has no control over this.

- extraction scheme will be a

The `multinomial extractor’
• Given x1,…,xk

• {z1,…,zs} - the distinct values among
x1,…,xk

– zi appears ai times

• Num. of orderings is

• E outputs index of (x1,..,xk) in orderings.
Under prod. distribution all orderings
have same prob E is uniform!

Gives at least (s·log(k)) bits (¸r when s¸r)

(generalization of [Von-Neumann, Elias])

!...!

!

,...,
11 ss aa

k

aa

k












Correctness proof for case s¸r

Want to show: AR(xi,E(x1,…,xk)) usually
correct for all 1·i·k.

Look at product distribution conditioned
on seeing z1,...,zs with freq. a1,…,as.
Get uniform distribution on orderings.
Set of bad random strings for {z1,…,zs}

has mass at most ²k.

1-²k frac. of orderings correspond to
random string that is good for whole
sequence.

Prf by picture: Condition product dist. on
seeing z1,…,zs , a1,…,as times. E is random, and
set of bad random strings is fixed (depends
on distinct values, not order).

(x1,…,xk)
E(x1,…,xk)

= set of bad

random strings

for one of the

xi’s

conditioned

sequences
random

strings

Algorithm-Reminder

1. x1,…,xk consist of s distinct
elements

2. s < r

1.Run AD on each instance.

3. s ¸ r

1.Extract r bits of randomness using
multinomial extractor E

2.Run AR on each instance with the
same random string E(x1,..,xk

)

• Will require k > rtd/tr

Toy example using VN

 k=2, AR uses one random bit.

Given (x1,x2):

- x1=x2: solve with AD

- x1x2: run AR on (x1,x2) with
r=0 if x1<x2 and r=1 otherwise.

We run AD at most once.

General Result- Communication Protocols.

Thm: f:{0,1}n£{0,1}n  {0,1}

• PR – rand. protocol for f using cr

communication bits, r random bits with
error ²

• PD – det. protocol for f using cd com. bits.

For k>»r¢cd/cr, 9 det protocol P using
O(k*cr) com. bits s.t.
for any product distribution X,
P answers correctly w.p.»1-²¢k on
(x1,y1),…,(xk,yk)X ,

An example of our results-
Communication complexity of equality

Equality: f(x,y) = 1 iff i, xi = yi

RandomizedDeterministicCom. Complexity

O(1)O(n)One Shot

x1, …, xny1, …, yn

k instances

 j, Equality: f(xj,yj) = 1 iff i, xj
i = yj

i

RandomizedDeterministicCom. Complexity

O(1)O(n)One Shot

O(k log k)O(kn)k correct answers

y1

y2

yk

x1

x2

xk

RandomizedDeterministicCom. Complexity

O(1)O(n)One Shot

O(k log k)O(kn)k correct answers

Succeed w.h.p on

all instances

y1

y2

yk

x1

x2

xk

D – arbitrary unknown distribution
(xj,yj) sampled independently from D

k>n log n O(k log k)

Other Results
1. Multiple Distributions-
• We assumed i, xi~D
• What happens if there are multiple

distributions?
• Fix unknown D1,…Dm

– i, xi~Dj (we do not know which j)
we get similar results for these `m-part

product distributions’.
2. Improved implicit o(logn) probe search –

[Yao, Fiat-Naor]

3. Derandomizing Streaming algorithms in
the random-order model.

谢谢你!

Proof Sketch

Given sequence x1,..,xk let {z1,..,zs} be
the distinct elements of the sequence.

Case 1: s<r- run AD on all elements.
Takes time s*td < k*tr

Case 2: s¸r- sequence `contains a lot of
randomness’. Extract randomness from
sequence and use it run AR!

i.e. 8i return AR(xi, E(x1,…,xk)) ,

where E is an extractor for product dist.
conditioned on seeing ¸r distinct values)

Recall k> r¢td/tr

