Derandomizing Algorithms on
Product Distributions

Ariel Gabizon
Avinatan Hassidim

(randomized)

AR

T

We say a randomized algorithm Ag
computes a function f:{0,1}">{0,1}
if for every x<{0,1}",

Ap(xy) = f(x) w.h.p over y

"TIdeal' Derandomization:

(randomized) (deterministic)
AR . g Ap
o
* running time t(n) * running time ~1(n)
» computing » computing f correctly
f:{0,1}r>{0,1} on all xc{0, 1}
seems har mﬂ achiéV ﬂg Remﬂﬁiﬁ'ﬂi‘%?@(n))
D .ﬁﬁmééfmﬁgrmm're Wer
S {mp-

Aew, milllion yeam‘e better relax the problem
5 44" foget some results!

First "relaxation’:

(Randomized) (deterministic)
AR N AD
* running Tirﬁ_e t(n) ¢ running time ~1(n)
- computing » computing f correctly
f:{0,1}>{0,1} w.h.p on any

distribution of inputs

.. This is no relaxation at alll as need to
succeed on distribution that gives
probability 1 to any xc{0, 1}

Real relaxation: Samplable distributions
[Impagliazzo-Wigderson]

(Randomized) (deterministic)

AR — AD

+ running time ¥(n) - running time ~1(n)

+ computing » computing f correctly w.h.p

F{011>{0.1) on any efficiently samplable
distribution of inputs

conditional results by [Impagiliazzo-
Wigderson, Trevisan-Vadhan] , par tral
unconditional results by [Kabanets] 4

Our relaxation: Product Distributions

Fix large enough k..
- Adversary fixes arbitrary distribution D on
{0,1}n.

- Ap gets k independent samples xi,..., x, from
D.

Ap needs to compute f(x,),..,f(x,) correctly
w.h.p.

Needs to do this in time ~ k-t(n)

(recall 1(n) is running time of Ay) 4

Dfn: A product distribution X on
({0,1})* is made of k independent
copies (X,,..,X,) of an arbitrary
distribution D on {0, 1}"

General Result - Algorithms

Thm: f:{0,1}>{0,1}

* Ap - rand. alg for f running in time t,.
using r random bits, with error .

* Ap - det. alg for f running in time t,.
For k> 8-r-td/t,,

3 det. alg A running in time k*t. + O(nk)
s.t A(xy,..,%) = f(xy),..,f(x)

w.p ~1-¢-k over any product distribution.

* [GolWig] get this result for uniform dist.

Randomness Extraction - Brief review

C- class of distributions that " contain a
lot of entropy’

E - extractor for C: For every
distribution X in G E(X) is uniform.-

- Classic example: Von-Neumann trick for
biased coin:

0150 10->1 00,11->try again

Proof Sketch

Given sequence x,..,x, let {z,,..,z.} be
the distinct elements of the sequence.

Case 1: s<r- run A, on all elements.
Takes time s*t, < k*t,

Case 2: s>r- sequence contains a lot of

randomness’'. Extract randomness from
sequence and use it run Al

i.e. Vi return Ag(x., E(Xq,...X,)) , where E is
an extractor for product distributions

Recall k> r-ta/t.

Potential Problem: Randomness correlated
with input may be bad w.h.p.

sequences with >
r distinct values

(X100, Xy) €
(Xq5--e0Xy) €
(X1,-+1X) €

random
strings

E(Xq,...

E(Xq,...

E(Xq,...

Xy = set of bad
random strings
for one of the
X;’S

(i.e., Au(x;, y)=f(x) {@

Potential Problem: Randomness correlated
with input may be bad w.h.p.

Solution: Extract randomness only from
order in which elements appear

- independent from actual input values

- As we get /ndependent samples adversary
has no control over this.

- extraction scheme will be a

The " multinomial extractor’
Given x4, ..., X,

{z,..,z.} - the distinct values among
Xy, s Xy

- Z;, appears q; times
Num. of orderings is (k j k!
Ay;..., Ay

..... al..-a/l

E outputs index of (x;,..,x,) in orderings.
Under prod. distribution all orderings
have same prob-> E is uniform!

Gives at least Qs -log(k)) bits (>r when s>r)
(generalization of [Von-Neumann, Elias]) 4

Correctness proof for case s>r
Ap(x,E(x,,...,x,)) usually
correct for all 1<i<k.

Look at product distribution conditioned
on seeing z;,...,z. with freq. a;,... a..
->Get uniform distribution on orderings.

Set of bad random strings for {z;,...,z.}
has mass at most ek.

~>1-¢k frac. of orderings correspond to
random string that is good for whole
sequence.

Prf by picture: Condition product dist. on
seeing z;,..,Z., a;,..,a; Times. E is random, and
set of bad random strings is fixed (depends
on distinct values, not order).

conditioned random
sequences strings
(
E(Xq,-.-,X)
(Xq,---1Xp)
O [= set of bad
random strings
(S for one of the
X;’S

Reminder - Algorithm

1. x,,..,x, consist of s distinct
elements

2.s<r
1.Run Aj on each instance.
3.s2>r

1.Extract r bits of randomness using
multinomial extractor E

2.Run A, on each instance with the
same random string E(xl,..,xk)

Will reguire k > rt_/t,

Toy example using VN

s k=2, A, uses one random bit.
Given (x;,X,):
- X;=X,: solve with Ay

- X#X,: run A, on (x;,%,) with
r=0 if x;<x, and r=1 otherwise.

We run A, at most once.

General Result- Communication Protocols.

Thm: f:{0,1}*x{0,1}» > {0,1}

* Py - rand. protocol for f using c.
communication bits, r random bits with
error e

* Py - det. protocol for f using ¢4 com. bits.

>For k>~r-cd/c., 3 det protocol P using
O(k*c.) com. bits s.t.
for any product distribution X,
P answers correctly w.p.~1-¢-k on

(%1.¥1), . (X, Y)EX,

An example of our results-
Communication complexity of equality

Equality: f(x,y) =1 iff Vi, x, =Y,

Com. Complexity | Deterministic | Randomized
One Shot O(n) O(1)

k instances

x1
NG
0]
; ;
y¥ xK
vV j, Equality: f(x,y) =1 iff Vi, x =yl
Com. Complexity | Deterministic | Randomized
One Shot O(n) O(1)
K correct answers O(kn) O(k log k)

(xJ,yJ) sampled independently from D

k>n log n

.)
s /, Y
NE!
X2
xok
Com. Complexity | Deterministic | Randomized
One Shot O(n) O(1)
K correct answers O(kn) O(k log k)
Succe_ed w.h.p on O(k log k)
all instances

D - arbitrary unknown distribution

Other Results
1. Multiple Distributions-
+ Weassumed Vi, x~D

What happens if there are multiple
distributions?

Fix unknown D;,..D,,
- Vi, x;~D; (we do not know which j)

we get similar results for these 'm-part
product distributions'

2. Improved implicit o(logn) probe search -
[Yao, Fiat-Naor]

3. Derandomizing Streaming algorithms in
the random-order model.

BB PRY

Proof Sketch

Given sequence x,..,x, let {z,,..,z.} be
the distinct elements of the sequence.

Case 1: s<r- run A, on all elements.
Takes time s*t, < k*t,
Case 2: s>r- sequence contains a lot of

randomness’'. Extract randomness from
sequence and use it run Al

i.e. Vi return Ag(x:, E(xq,...,. X)),

where E is an extractor for product dist.
conditioned on seeing >r distinct values)

Recall k> r-fa/t. ¢

