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We say a randomized algorithm AR

computes a function f:{0,1}n
{0,1}

if for every x2{0,1}n,

AR(x,y) = f(x) w.h.p over y

(randomized)

AR



• running time t(n) 

• computing 
f:{0,1}n

{0,1}

…We better relax the problem 
to get some results!

• running time »t(n) 

• computing f correctly
on all x2{0,1}n

(randomized)

AR

(deterministic)

AD

Arr!...Derandomize 
something now or off with 

your heads!

`Ideal’ Derandomization:

seems hard.. achieving AD with poly(t(n))

running time implies unknown circuit lower 

bounds [Imp-Kab-Wig, Kab-Imp[,..so may take a 

few milllion years



• running time t(n) 

• computing 
f:{0,1}n

{0,1}

…This is no relaxation at all! as need to 
succeed on distribution that gives 
probability 1 to any x2{0,1}n

• running time »t(n) 

• computing f correctly
w.h.p on any 
distribution of inputs

(Randomized)

AR

(deterministic)

AD

First `relaxation’:



• running time t(n) 

• computing 
f:{0,1}n

{0,1}

conditional results by [Impagiliazzo-

Wigderson, Trevisan-Vadhan] , partial 
unconditional results by [Kabanets]

• running time »t(n) 

• computing f correctly w.h.p 
on any efficiently samplable
distribution of inputs

(Randomized)

AR

(deterministic)

AD

Real relaxation: Samplable distributions 
Wigderson]-[Impagliazzo



Fix large enough k..

- Adversary fixes arbitrary distribution D on
{0,1}n.

- AD gets k independent samples x1,…,xk from
D.

AD needs to compute f(x1),…,f)xk) correctly 
w.h.p.

Needs to do this in time » k¢t(n)

(recall t(n) is running time of AR)

Our relaxation: Product Distributions 



Dfn: A product distribution X on 
({0,1}n)k is made of k independent 
copies (X1,…,Xk) of an arbitrary 
distribution D on {0,1}n



General Result - Algorithms

Thm: f:{0,1}n{0,1}

• AR – rand. alg for f running in time tr , 
using r random bits, with error ².

• AD – det. alg for f running in time td.

For k> 8¢r¢td/tr,

9 det. alg A running in time k*tr + O(nk)

s.t A(x1,..,xk) = f(x1),..,f(xk)

w.p »1-²¢k over any product distribution.

• [GolWig] get this result for uniform dist.



Randomness Extraction – Brief review

C – class of distributions that `contain a 
lot of entropy’

E – extractor for C : For every

distribution X in C, E(X) is uniform.`

- Classic example: Von-Neumann trick for 
biased coin:

010 101 00,11try again



Proof Sketch

Given sequence x1,..,xk let {z1,..,zs} be 
the distinct elements of the sequence.

Case 1: s<r- run AD on all elements. 
Takes time s*td < k*tr

Case 2: s¸r- sequence `contains a lot of 
randomness’. Extract randomness from 
sequence and use it run AR! 

i.e. 8i return AR(xi, E(x1,…,xk)) ,  where E is 
an extractor for product distributions

Recall k> r¢td/tr



Potential Problem: Randomness correlated 
with input may be bad w.h.p.

(x1,…,xk)
E(x1,…,xk)

= set of bad 

random strings

for one of the 

xi’s

(i.e., AR(xi,y)f(xi) )

sequences with ¸

r distinct values
random 

strings

(x1,…,xk)

(x1,…,xk) E(x1,…,xk)

E(x1,…,xk)



Potential Problem: Randomness correlated 
with input may be bad w.h.p.

Solution: Extract randomness only from 
order in which elements appear

- independent from actual input values

- As we get independent samples adversary 
has  no control over this.

- extraction scheme will be a 



The `multinomial extractor’ 
• Given x1,…,xk

• {z1,…,zs} - the distinct values among 
x1,…,xk

– zi appears ai times

• Num. of orderings is

• E outputs index of (x1,..,xk) in orderings. 
Under prod. distribution all orderings 
have same prob E is uniform!

Gives at least (s·log(k)) bits (¸r when s¸r)

(generalization of [Von-Neumann, Elias])
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Correctness proof for case s¸r

Want to show: AR(xi,E(x1,…,xk)) usually 
correct for all 1·i·k.

Look at product distribution conditioned  
on seeing z1,...,zs with freq. a1,…,as.
Get uniform distribution on orderings.
Set of bad random strings for {z1,…,zs}

has mass at most ²k.

1-²k frac. of orderings correspond to 
random string that is good for whole 
sequence.



Prf by picture: Condition product dist. on 
seeing z1,…,zs , a1,…,as times. E is random, and 
set of bad random strings is fixed (depends 
on distinct values, not order).

(x1,…,xk)
E(x1,…,xk)

= set of bad 

random strings

for one of the 

xi’s

conditioned 

sequences
random 

strings



Algorithm-Reminder 

1. x1,…,xk consist of s distinct 
elements

2. s < r

1.Run AD on each instance.

3. s ¸ r

1.Extract r bits of randomness using 
multinomial extractor E

2.Run AR on each instance with the 
same random string E(x1,..,xk

)

• Will require k > rtd/tr



Toy example using VN 

 k=2, AR uses one random bit.

Given (x1,x2):

- x1=x2: solve with AD

- x1x2: run AR on (x1,x2) with 
r=0 if x1<x2 and r=1 otherwise.

We run AD at most once. 



General Result- Communication Protocols.

Thm: f:{0,1}n£{0,1}n  {0,1}

• PR – rand. protocol for f using cr

communication bits, r random bits with 
error ²

• PD – det. protocol for f using cd com. bits.

For k>»r¢cd/cr, 9 det protocol P using 
O(k*cr) com. bits s.t.                   
for any product distribution X,           
P answers correctly w.p.»1-²¢k on 
(x1,y1),…,(xk,yk)X ,



An example of our results-
Communication complexity of equality

Equality: f(x,y) = 1     iff    i, xi = yi

RandomizedDeterministicCom. Complexity

O(1)O(n)One Shot

x1, …, xny1, …, yn



k instances

 j, Equality: f(xj,yj) = 1     iff    i, xj
i = yj

i

RandomizedDeterministicCom. Complexity

O(1)O(n)One Shot

O(k log k)O(kn)k correct answers

y1

y2

yk

x1

x2

xk



RandomizedDeterministicCom. Complexity

O(1)O(n)One Shot

O(k log k)O(kn)k correct answers

Succeed w.h.p on 

all instances

y1

y2

yk

x1

x2

xk

D – arbitrary unknown distribution
(xj,yj) sampled independently from D

k>n log n O(k log k)



Other Results
1. Multiple Distributions-
• We assumed i,  xi~D 
• What happens if there are multiple 

distributions?
• Fix unknown D1,…Dm

– i,  xi~Dj  (we do not know which j)
we get similar results for these `m-part 

product distributions’.
2. Improved implicit o(logn) probe search –

[Yao, Fiat-Naor]

3. Derandomizing Streaming algorithms in 
the random-order model.



谢谢你!



Proof Sketch

Given sequence x1,..,xk let {z1,..,zs} be 
the distinct elements of the sequence.

Case 1: s<r- run AD on all elements. 
Takes time s*td < k*tr

Case 2: s¸r- sequence `contains a lot of 
randomness’. Extract randomness from 
sequence and use it run AR! 

i.e. 8i return AR(xi, E(x1,…,xk)) , 

where E is an extractor for product dist. 
conditioned on seeing ¸r distinct values)

Recall k> r¢td/tr


