Derandomizing Algorithms on Product Distributions

Ariel Gabizon
Avinatan Hassidim

We say a randomized algorithm A_{R} computes a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ if for every $x \in\{0,1\}^{n}$,

$$
A_{R}(x, y)=f(x) \text { w.h.p over } y
$$

Ideal' Derandomization:

- running time $\dagger(n)$
- computing $f:\{0,1\}^{n} \rightarrow\{0,1\}$

- running time $\sim \dagger(n)$
- computing f correctly on all $x \in\{0,1\}^{n}$

- running time $t(n)$
- computing $f:\{0,1\}^{n} \rightarrow\{0,1\}$

- running time $\sim \dagger(n)$
- computing f correctly w.h.p on any distribution of inputs
... This is no relaxation at all! as need to succeed on distribution that gives probability 1 to any $x \in\{0,1\}^{n}$

Real relaxation: Samplable distributions
[Impagliazzo-Wigderson]
(Randomized) A_{R}

- running time $t(n) \cdot$ running time $\sim t(n)$
- computing $\begin{aligned} & \text { f: }\{0,1\}^{n} \rightarrow\{0,1\} \quad \text { computing } f \text { correctly w.h.p }\end{aligned}$
 on any efficiently samplable distribution of inputs
conditional results by [ImpagiliazzoWigderson, Trevisan-Vadhan], partial unconditional results by [Kabanets]

Our relaxation: Product Distributions

Fix large enough k..

- Adversary fixes arbitrary distribution D on $\{0,1\}^{n}$.
- A_{D} gets k independent samples x_{1}, \ldots, x_{k} from D.
A_{D} needs to compute $f\left(x_{1}\right), \ldots, f\left(x_{k}\right)$ correctly w.h.p.

Needs to do this in time $\sim k \cdot t(n)$
(recall $t(n)$ is running time of A_{R})

Dfn: \boldsymbol{A} product distribution X on $\left(\{0,1\}^{n}\right)^{k}$ is made of k independent copies (X_{1}, \ldots, X_{k}) of an arbitrary distribution D on $\{0,1\}^{n}$

General Result - Algorithms

The: $f:\{0,1\}^{n} \rightarrow\{0,1\}$

- A_{R} - rand. alg for f running in time t_{r}, using r random bits, with error ϵ.
- A_{D} - jet. alg for f running in time t_{d}.

For $k>8 . r \cdot \tau_{d} / t_{r}$,
\exists det. alg A running in time $k^{*} t_{r}+\widetilde{O}(n k)$
s.t $A\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}\right), \ldots f\left(x_{k}\right)$
$w . p \sim 1-\epsilon \cdot k$ over any product distribution.

- [GolWig] get this result for uniform dist.

Randomness Extraction - Brief review

\mathfrak{e} - class of distributions that `contain a lot of entropy'
E - extractor for \mathbb{C} : For every distribution X in $\mathcal{C}, E(X)$ is uniform.

- Classic example: Von-Neumann trick for biased coin:
$01 \rightarrow 0$ 10 \rightarrow 1 00,11 \rightarrow try again

Proof Sketch

Given sequence x_{1}, \ldots, x_{k} let $\left\{z_{1}, \ldots, z_{s}\right\}$ be the distinct elements of the sequence.
Case 1: $s<r$ - run A_{D} on all elements. Takes time $s^{\star} t_{d}<k^{\star} t_{r}$
Case 2: $s \geq r$ - sequence `contains a lot of randomness'. Extract randomness from sequence and use it run A_{R} !
i.e. \forall i return $A_{R}\left(x_{i}, E\left(x_{1}, \ldots, x_{k}\right)\right)$, where E is an extractor for product distributions

Recall $k>r \cdot t_{d} / t_{r}$

Potential Problem: Randomness correlated

 with input may be bad w.h.p.sequences with $\geq \quad$ random r distinct values strings

Potential Problem: Randomness correlated with input may be bad w.h.p.
Solution: Extract randomness only from order in which elements appear

- independent from actual input values
- As we get independent samples adversary has no control over this.
- extraction scheme will be a

The 'multinomial extractor'

- Given x_{1}, \ldots, x_{k}
- $\left\{z_{1}, \ldots, z_{s}\right\}$ - the distinct values among x_{1}, \ldots, x_{k}
- z_{i} appears a_{i} times
- Num. of orderings is $\binom{k}{a_{1}, \ldots, a_{s}}=\frac{k!}{a_{1}!\ldots \cdot a_{s}!}$
- E outputs index of (x_{1}, \ldots, x_{k}) in orderings. Under prod. distribution all orderings have same prob $\rightarrow E$ is uniform!
Gives at least $\Omega(s \cdot \log (k))$ bits $(\geq r$ when $s \geq r)$
(generalization of [Von-Neumann, Elias])

Correctness proof for case $s \geq r$

 Want to show: $A_{R}\left(x_{i j} E\left(x_{1}, \ldots, x_{k}\right)\right)$ usually correct for all $1 \leq i \leq k$.Look at product distribution conditioned on seeing z_{1}, \ldots, z_{s} with freq. a_{1}, \ldots, a_{s}.
\rightarrow Get uniform distribution on orderings.
Set of bad random strings for $\left\{z_{1}, \ldots, z_{s}\right\}$ has mass at most ϵ k.
$\rightarrow 1$-єk frac. of orderings correspond to random string that is good for whole sequence.

Prf by picture: Condition product dist. on seeing $z_{1}, \ldots, z_{s}, a_{1}, \ldots, a_{s}$ times. E is random, and set of bad random strings is fixed (depends on distinct values, not order).
conditioned random
sequences strings

$\square=$ set of bad
random strings
for one of the
x_{i} 's

Reminder - Algorithm

1. x_{1}, \ldots, x_{k} consist of s distinct elements
2. s < r
1.Run A_{D} on each instance.
3. $s \geq r$
4. Extract r bits of randomness using multinomial extractor E
5. Run A_{R} on each instance with the same random string $E\left(x_{1}, \ldots, x_{k}\right)$

- Will require $k>r t_{d} / t_{r}$

Toy example using VN

- $k=2, A_{R}$ uses one random bit.

Given (x_{1}, x_{2}):

- $x_{1}=x_{2}$: solve with A_{D}
- $x_{1} \neq x_{2}$: run A_{R} on $\left(x_{1}, x_{2}\right)$ with $r=0$ if $x_{1}<x_{2}$ and $r=1$ otherwise.
We run A_{D} at most once.

General Result- Communication Protocols.
Thm: $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$

- P_{R} - rand. protocol for f using c_{r} communication bits, r random bits with error ϵ
- P_{D} - det. protocol for fusing c_{d} com. bits.
\rightarrow For $k>\sim r \cdot c_{d} / c_{r}, \exists$ det protocol P using $O\left(k^{*} c_{r}\right)$ com. bits s.t.
for any product distribution X,
P answers correctly w.p.~1- $\epsilon \cdot k$ on $\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right) \leftarrow X$,

An example of our results-

Communication complexity of equality

Equality: $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathbf{1} \quad \mathrm{iff} \quad \forall \mathrm{i}, \mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}}$

Com. Complexity	Deterministic	Randomized
One Shot	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(1)$

k instances

$\forall \mathrm{j}$, Equality: $\mathrm{f}\left(\mathrm{x}^{\mathrm{j}}, \mathrm{y}^{\mathrm{j}}\right)=1 \quad$ iff $\quad \forall \mathrm{i}, \mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}}^{\mathrm{i}}$

Com. Complexity	Deterministic	Randomized
One Shot	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(1)$
k correct answers	$\mathrm{O}(\mathrm{kn})$	$\mathrm{O}(\mathrm{k} \log \mathrm{k})$

D - arbitrary unknown distribution (x^{j}, y^{j}) sampled independently from D

Com. Complexity	Deterministic	Randomized
One Shot	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(1)$
k correct answers	$\mathrm{O}(\mathrm{kn})$	$\mathrm{O}(\mathrm{k} \log \mathrm{k})$
Succeed w.h.p on all instances	$\mathrm{O}(\mathbf{k} \log \mathbf{k})$	

Other Results

1. Multiple Distributions-

- We assumed $\forall i, x_{i} \sim D$
- What happens if there are multiple distributions?
- Fix unknown $D_{1}, \ldots D_{m}$
- $\forall i, x_{i} \sim D_{j}$ (we do not know which j)
we get similar results for these 'm-part product distributions'.

2. Improved implicit o(logn) probe search [Yao, Fiat-Naor]
3. Derandomizing Streaming algorithms in the random-order model.

谢谢你！

Proof Sketch

Given sequence x_{1}, \ldots, x_{k} let $\left\{z_{1}, \ldots, z_{s}\right\}$ be the distinct elements of the sequence.
Case 1: $s<r$ - run A_{D} on all elements. Takes time $s^{\star} \dagger_{d}<k^{\star} t_{r}$
Case 2: $s \geq r$ - sequence 'contains a lot of randomness'. Extract randomness from sequence and use it run A_{R} !
ie. $\forall i$ return $A_{R}\left(x_{i}, E\left(x_{1}, \ldots, x_{k}\right)\right)$, where E is an extractor for product dist. conditioned on seeing $\geq r$ distinct values) Recall $k>r \cdot t_{d} / t_{r}$

